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Transpression 
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Abstract--Transpression is considered as a wrench or transcurrent shear accompanied by horizontal shortening 
across, and vertical lengthening along, the shear plane. A model for the strain in transpression is derived, from 
which the shape and orientation of the finite strain ellipsoid, and the stretch and rotation of lines can be 
determined. Shortening across the zone of transpression leads to oblate finite strain ellipsoids (k < 1). 

By considering the superposition of small increments of strain various model deformation paths are computed. 
These are used to interpret the development of structures, such as en-~chelon folds, in transpression zones. The 
incremental strain ellipsoid allows prediction of the orientation of the principal stresses and hence brittle 
structures within such zones. The model is also applied to bends and terminations of shear zones and used to 
interpret the observed patterns of folds and fractures in these. 

INTRODUCTION 

MANY zones of deformation in the crust are bounded by 
steep, parallel planes, often representing strain discon- 
tinuities manifest as faults or shear zones. If there has 
been negligible vertical displacement between the rocks 
on either side of the deformed zone, then the deforma- 
tion within must involve a stretch across the zone and/or 
transcurrent shear along it. We term such deformation 
Transpression (Fig. 1). This term was used by Harland 
(1971) to describe deformation arising from the oblique 
convergence of plates. The model has been generalized 
somewhat in this paper, and includes Harland's trans- 
tension. 

Consider a zone within which there is no volume 
change and which is laterally confined (i.e. there is no 
stretch along the zone leading to extrusion of material at 
its ends). Then the shortening across the zone results in 
an area change which must be compensated by vertical 
thickening in order to conserve volume. If there is a 
component of shear along the zone, then the deforma- 
tion can be factorized into pure shear and simple shear 
components as follows 

D = l a -1  = a -1 . 

0 0 0 

(1) 
This factorization and the parameters a and 3' are defined 
in Fig. 1, where a-1 specifies the shortening across the 
zone, a the vertical stretch and 3'the shear strain parallel 
to the zone. More strictly a-~ is the ratio of the deformed 
to original width of the zone. Where 3" ~ 0, this differs 
from the stretch of a line normal to the zone boundary 
and balancing sections across the zone should not be 
used to estimate a-~ directly. 

The formulation in equation (1) is called factorization 
since it defines a strain in terms of two factors a and y. 
The process is analogous to the factorization of matrices. 
Since matrix multiplication is non-commutative the 
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Fig. 1. Transpression geometry, showing transformation of a unit cube 
by shortening parallel to Y-axis and shear parallel to X-axis. Volume 

conserved by lengthening parallel to Z-axis. 

sequence of multiplication in equation (1) is chosen for 
mathematical convenience and to give the simple defini- 
tion of 3, as the shear strain normal to the zone. This 
treatment is similar to that of Matthews et al. (1971, 
1974). It does not necessarily imply any sequence of 
deformation (see later). 

F I N I T E  S T R A I N  I N  T R A N S P R E S S I O N  

Strain ellipsoid 

By assigning different values to the parameters c~ -1 
and 3' we can evaluate the finite strain, and thus learn 
how varying amounts of shortening and shear strain are 
reflected in the finite strain state of the rocks in the zone. 
These calculations may be done by formulating D and 
finding the eigenvalues and eigenvectors of the Finger 
tensor DD' (see Sanderson et al. 1980, Sanderson 1982) 
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Fig. 2. Deformat ion plot (Flinn diagram) showing axial ratios a = X / Y  and b = Y/Z  produced by transpression model for 
various values of  ~ - '  (cont inuous line) and y (dashed line). 

which give the principal quadratic elongations and prin- 
cipal strain axes, respectively. Figure 2 shows the finite 
strain grid produced. 

Clearly the shape of the strain ellipsoid varies with a -  
as follows 

for a -t < 1, oblate strains (k < 1) are produced; 
for a - t  = 1, plane strain (k = 1) results - simple shear; 
for a -I > 1, prolate strains (k > 1) result. 

Whilst Fig. 2 gives the shape of the strain ellipsoid there 
are important variations in the orientations of its princi- 
pal axes (X > Y > Z). One principal strain is always 
vertical. For simple shear (a -  I = 1) this is the Y-axis. For 
a-I  < 1 the vertical axis may be either X or Y, thus the 
XY-plane (cleavage?) is always vertical but at an angle 
(0') to the zone boundary (Fig. 3). For a -I > 1, either Z 
or Y may be vertical, thus the XY-plane 'switches' 
between vertical and horizontal. These 'switches' in 
principal axes occur where the strain ellipsoid assumes a 
k = 0 or k = oo shape and hence at the axes of the strain 
plot in Fig. 2 (see Ramsay & Wood 1973, Sanderson 
1976 for discussion of similar features). 

Change in angle 

The transformation of a unit vector (x = cos ~b, 
y = sin 4~) is given by 

o   tcos 
c d  ) \sin ~ )  

which on expansion gives 

x '  = cos ~b + a-13" sin ~b 
y '  = a  - Is in~b 

and therefore 

(2) 

(3a) 
(3b) 

cot ~b' = x'/y' = (cos ~b + a-13" sin ~b)(t~ -1 sin ~b) -I 
cot ~b' = a cot th + 3'. (4) 

This formula gives the orientation of a line after 
deformation in terms of the parameters a and 3', within 
the horizontal plane (XYof  Fig. 1). 

Change in length 

The squared length of a transformed unit vector is the 
quadratic elongation (A) and from equation (3) 

;t = x '2 + y,2 = (cos ~b + a-13' sin 0)  2 + a -2 sine ~b 
A= 1 + ( a - 2 + a - : y  2 -  1)sin2~b+2a-i3'cos~bsin~b. (5) 

This expresses the quadratic elongation of a line in terms 
of ~b, its orientation in the undeformed state. 

To find the corresponding expression in terms of the 
orientation in the deformed state ( d )  we need to con- 
sider the inverse transformation 

(~) = (~ -aY) (~ : ) .  (6) 

The reciprocal quadratic elongation (A' = I/A) is simply 
the squared length of a line before deformation which 
yields a unit vector afterwards, hence 

A' = xe + y2 = (cos d - 3'sin d )  2 + a :  sin: ~b' 
A' = 1 + (a:  + 3'e - 1) sin-' ~b' - 23'sin ~b' cos th'. (7) 

Equations (5) and (7) reduce to those for simple shear 
when a = 1 and pure shear when 3' = 0. 

INCREMENTAL STRAINS AND STRAIN PATHS 

Figures 2 and 3 describe the finite strain fields which 
result from the transpression model. It must not be 
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Fig. 3. Plot of orientation of long axis of strain ellipse in horizontal plane (~'). Continuous lines indicate X-axis horizontal, 
dashed lines indicate X-axis vertical. 

assumed that the lines on these diagrams represent 
deformation paths. In general any finite strain state may 
be reached by an infinite number of deformation paths, 
and it is the path (including rotation) which determines 
the progressive development of structures in any defor- 
mation. In order to understand the kinematics of trans- 
pression zones we need to make further assumptions 
about the deformation path. We will consider two special 
cases. 

(a) Constant incremental strain 

If we let 3'--* 0 and a- l  __. 1, in practice let -0 .1  < 3'i < 
0.1 and 0.95 < a71 < 1.05, we define a small strain which 
approximates the-incremental strain. A convenient 
parameter to specify the relative magnitudes of a71 and 
yiis 

Ti = 7/(1 - a71) -1. (8) 

Values of a7 ~ and y, are chosen to give a specific value of 
Ti. If both numerator and denominator of equation (8) 
are doubled but still produce the same deformation path 
then the increments are considered small enough for 
modelling purposes. The incremental strain matrix (D~) 
has two important modelling properties. 

Firstly, by sequentially premultiplying these matrices 
we get a finite strain with each successive increment 
defining the deformation path, both in terms of the 
shape and orientation of the finite strain ellipsoid. We 
call this process powering the matrix such that D = D7 = 
Di. Di. Di. • • Di. D~. Various examples of constant incre- 
mental deformation paths are plotted in Fig. 4. One 
feature from these plots is that the principal axes can 
'swap' along some paths of constant incremental strain 
(such as path 3 in Fig. 4). Also, there is a change from 

those with low k-values and Xverticai, to higher k-values 
and X horizontal. Similarly for ~r -] > 1, very high 
k-values accompany vertical Z-axes. The axis swapping 
is very interesting since it indicates that the maximum 
finite stretch may be normal to the maximum incremen- 
tal stretch. Thus the geometrical relationships between 
structures related to finite strain (cleavage and stretching 
lineations) and those related to incremental strain (frac- 
tures, etc.) may be complex. 

Secondly, the incremental strain axes will be parallel 
to the principal stresses, thus we can predict the orienta- 
tion of failure in the zone (at least if we assume it is 
elastically isotropic). Figure 5 shows the influence of a -  
on the orientation of maximum compression axes and 
the sorts of structures which might result. These dia- 
grams include as a special case (a-l  = 1) the well known 
wrench tectonics patterns of Moody & Hill (1956) and 
Wilcox et al. (1973). 

Some important features of transpression are obvious 
from Fig. 5. The 45 ° obliquity of structures in simple 
shear zones (see Ramsay & Graham 1970, Ramsay 
1980) is modified. For a -~ < 1, folds and thrusts initiate 
at much lower angles to the zone, whereas extensional 
structures (veins, dykes, normal faults, etc.) initiate at 
higher angles. The opposite applies where a-1 > 1. 
Subsequent rotation as strain progresses will also modify 
these directions as in simple shear, but this is now 
governed by equation (4). In applying these concepts it 
must be remembered that transpression requires a strain 
discontinuity or zone of complex strain between the 
interior and exterior of the zone. For this reason simple 
shear may be fairly common in nature, especially where 
zones remain continuous with undeformed rock. 
Volume change, however, may occur, in which case a -  
represents the dilation (1 + A) of Ramsay & Graham 
(1970) in equations (2)-(7). Thus the two-dimensional, 
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Fig. 4. Constant incremental strain paths for the transpression model. Values on paths are numerical labels derived by 
dividing incremental shear strain by (1 - ate).  Note the 'swapping' of axes indicated by 'bouncing' of strain path off the 

b-axis for path number 3. 

but not three-dimensional, aspects of the model may be 
applied to volume change and the patterns in Fig. 5 
obtained. 

(b) Simple Transpression (as defined by Harland 1971) 

In general we cannot predict deformation paths with 
any degree of certainty, although the use of incremental 
strain indicators (Elliott 1972) may constrain the choice. 
If the stresses and material properties of the rock remain 
constant, then we might predict constant strain incre- 
ments, but clearly these situations are unlikely to apply 
to natural deformation. Arguments based on the 
minimum work principle (Nadai 1963) seem equally 
impractical since they require the rock to prejudge its 
final strain state and be able to compute the required 
strains. Deformation paths are more probably deter- 
mined by two main factors, the external boundary dis- 
placements of the system and the internal rheological 
variations of which layering is a common and important 
geological example. The latter are difficult to treat and 
the former usually impossible to specify. 

Harland (1971) suggested a form of deformation 
which he called Simple Transpression in which he 
specified the deformation in terms of a set of boundary 
conditions involving two rigid boundaries approaching 
one another obliquely (Fig, 6). If we assume that the 
material is isotropic we can determine the finite strain at 
various increments of shortening (S) and hence define 
the deformation path relative to this time-like para- 
meter. 

. . , r / ,  
o~-7= 1 

cx'~l 

Fig. 5. Diagrams to show orientations of fractures in the transpression 
model. C, 'compression axis" ((r I ); E, "extension axis" (~r~); N, normal 
faults; T, thrust faults; R. R' ,  Riedel shears or wrench faults; V, veins, 
dykes or extension fractures; F, fold axes. The central diagram corres- 

ponds to the classical Wrench tectonics model. 
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This special case has been analysed to show how one 
might approach problems from a knowledge or assump- 
tion of the boundary conditions. The model itself might 
be used to simulate the oblique collision of two con- 
tinents or the oblique closure of a basin. It also illustrates 
the important philosophical point that even simple 
boundary conditions can give rise to quite complex 
deformation paths. In this case where /3 is small the 
deformation path contains a switching of the X and Y 
axes (Fig. 7). 

APPLICATION OF THE TRANSPRESSION MODEL 
TO ZONES OF FOLDING 

The purpose of this section is to examine the use of the 
transpression model in the interpretation of fold pat- 
terns. Since many factors influence fold development it 
is not intended that fold patterns should be used to 
evaluate the strain parameters, but simply to see if 
reasonable parameters give rise to observed patterns. 

Fig. 0. Simple Transpression model involving movement  of rigid 
blocks (diagonal shading) with transpressive deformation of stippled 

zone. For further discussion see text. 

The shortening across the zone is given by 

and from Fig. 6 

S 
sin 

a - j  = (1  _ S )  

from which 

sin/3 _ sin/3 
sin (90 + /3 - tp) cos (/3 - 0) 

sin/3 
cos/3 cos 0 + sin/3 sin 

3' = tan ~k = S(1 - S)-1 cot/3. 

Thus, a-~ and 3' can be expressed in terms of S for any 
given value of/3. Figure 7 shows the deformation paths 
for various values of/3. 

(a) En-dchelon folding 

En-6chelon folding has often been attributed to 
wrench tectonics, and simple shear used to conceptualize 
its development (Moody & Hill 1956, Moody 1973, 
Harding 1973, 1974, Wilcox et al. 1973). In simple shear 
the incremental minimum stretch (Z;) is at 45 ° to the 
shear plane, and hence folds would be expected to 
initiate normal to this direction (Fig. 5b). Almost all the 
examples in the works listed above have folds at angles 
• ~45 ° to the zones. For example, Moody & Hill (1956) 
summarize folds from southern California and conclude 
that they trend at <25 ° to the known wrench faults. 

It is true that the fold axes may rotate towards the 
shear plane with increasing strain, but high shear strain 
(3' > 2) is necessary to reduce this angle to <22.5 °. Such 
shear strains imply considerable shortening across the 
folds (c. 60% for 3' = 2), which greatly exceeds likely 
values in these areas. 

a 

/ 

. . , # _  - - .  

2 3 4 5 6 78910 20 ~0 ~ O0~OP 

b 1 

Fig. 7. Strain paths for Simple Transpression model. Continuous lines are strain paths for labelled ~ angles, dashed lines 
indicate amount of shortening across zone (~-t  ). a = X~ Y.  b = Y / Z .  
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Fig. 8. Initial angle (0~) of strike of maximum incremental stretch in 
horizontal plane for different incremental strains (T~). 

a larger antiform. The minor folds trend clockwise of the 
major hinge, this being consistent with left-lateral shear. 

Similar obliquity of gentle minor folds to open/close 
major folds has been found by the authors in another 
left-lateral zone in the Slick Hills, which form part of the 
southern Oklahoma aulacogen, between the Wichita 
uplift and the Anadarko basin. Arthurton (1983) 
describes similar obliquity in the Skipton area, northern 
England, in a region of right-lateral wrench tectonics. 
The obliquity of major and minor folds might present a 
useful indicator of strike-slip components of deforma- 
tion. 

TRANSPRESSION AT BENDS AND TERMINATIONS 

AS with the wrench tectonics model, departures from 
parallel-sided deformation zones, such as offsets and 
changes in zone width, will introduce added complexity 
to the model and the resulting deformation patterns. 

The transpression model, however, allows fold initia- 
tion at angles <45 °. Figure 8 shows the angle of initiation 
(0~) for different values of Ti. For example, consider 
increments a7 ~ = 0.99, Yi = 0.02, i.e. Ti = 2, in the 
incremental strain matrix, this produces Zi at c. 59 ° to 
the zone. Thus the model predicts fold initiation at c. 31 ° 
to the zone. 

(b) Obliquity o f  major and minor folds 

To model the progressive development of folds let us 
consider what might happen as en-6chelon folds 
develop. Using the previous example of a fold initiating 
at c. 31 ° in a zone with T i = 2 ,  we can power the 
incremental strain matrix Di to give us the constant 
increment deformation path (Fig. 4) and from it find the 
values of a -J and 3' at any stage in the deformation. Let 
us consider the point A in Fig. 4 where the values are a -~ 
= 0.8, 3' = 0.5. Since the fold axis initiated at O~ = 31 ° to 
the zone, and assuming passive rotation, we may use 
equation (4) to calculate that it will rotate to an angle 
01 = 21 °. 

Thus the early formed folds rotate and tighten, but for 
constant incremental strain any newly formed folds will 
still initiate on flat lying beds at 0~ = 31 °. The net result 
will be the development of a pattern of folding with early 
major folds at c. 21 ° to the zone and with gentle minor 
folds on their shallow dipping limbs or hinge zones at a 
higher angle (c. 31 °) to the zone. 

This pattern of minor folds oblique to major folds has 
been seen in strike-slip zones. Figure 9 shows an example 
from the aureole of the Main Donegal granite, Ireland. 
Hutton (1982) describes how minor folds (locally F4, 
regionally/'6) and a crenulation cleavage initiate at c. 45 ° 
to a shear zone and rotate into parallelism with it as the 
strain increases. This and other strain features (see also 
Sanderson et al. 1980), are attributed to left-lateral 
shear. The figured fold comes from near the edge of the 
zone and clearly shows minor folds in the hinge region of 

(a) Bends producing oblique convergence 

Even in the absence of a shear component along the 
zone (i.e. 3/= 0), offsets will produce en-6cheion pat- 
terns of folds (Fig. 10). The offset may be modelled by 
Simple Transpression and from the angle (/3), the fold 
axis orientation predicted. In Fig. 10, with/3 = 45 °, folds 
initiate at c. 22 ° to the offset boundary and produce an 
en-6chelon array with individual folds at c. 67 ° to the 
array. 

(b) Bends in simple shear zones 

In a simple shear zone the Simple Transpression 
model can also be used to model bend strains (Fig. 11). 
If we have rigid blocks bounding the offset zone then 
simple shear along the overall zone induces Simple 
Transpression in the offset zone. As with wrench tec- 
tonic models, the sense of offset determines whether the 
zones are 'compressive' (a -~ < 1) or 'dilational' 
( a - ' >  1). 

For 'compressive' offsets (Fig. 11) transpression pro- 
duces folds at a high angle to the overall zone and the 
'compression' will be accommodated by crustal thicken- 
ing (i.e. a > 1). This in turn produces uplift and the 
boundaries between the transpression region and the 
rest of the shear zone may develop as high-angle reverse, 
or oblique-slip, faults (Fig. 11). These uplifted regions 
will also be areas of more intense strain. 

When 'dilationai' offsets develop (Fig. I1), a < 1 and 
crustal thinning results. Extensional features such as 
dykes, normal faults and veins will be oriented at a high 
angle to the shear zone, and any folds will be at a low 
angle. The crustal thinning will produce subsidence and 
the development of pull-apart basins. 

Where offsets are numerous and complex a braided 
fault zone may develop. This will be characterized by 
juxtaposed basins and uplifts. The basins should have 
folds sub-parallel to the zone and have many diagonal or 
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Fig. 9. Example of oblique development of minor folds in hinge of major fold from the aureole of the Main Donegal granite 
Ireland. 
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Fig. 10. Model to show generation of transpressive region between 
offset in a compression zone (3' = 0). Shortening, a -~ = 0.8 in lower 

diagram. 
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Fig. 1 I. Diagram to show generation of  a Simple Transpressive zone in 
a region of  offset of a shear zone (i.e. simple shear). The upper rigid 
block (diagonal shading) moves left relative to the lower one,  generat- 
ing the area of transpression (dots and crosses). The unshaded parts of 
the zone undergo simple shear. Orientation of fold axes inside and 
outside the transpression region are shown. The boundaries between 
the vertically thickened (crosses) or thinned (stippled). transpressive 
regions and those of simple shear (unchanged thickness) are shown as 
faults, necessary to accommodate  the strain discontinuity between the 

t w o .  

D 

Fig. 12. Pattern of strain distribution in "transpression" regions at 
terminations of wrench faults. C. compression zones showing fold 

orientations; D. dilation zones showing normal fault orientations. 

cross faults with normal or oblique-slip movement. The 
uplifts might be expected to be dominated by folds and 
reverse faults, which initially developed at a high angle 
to the zone but may be subsequently rotated if the strain 
is large. Faults would be diagonal or longitudinal to the 
folding. 

Many of these characteristics can be seen in the San 
Andreas fault zone (e.g. Harding 1974, and particularly, 
Sylvester & Smith 1976) and in the Najd fault system, 
Saudi Arabia (Moore 1979). 

(c) Terminations of  wrench zones 

Terminations are much the same as offsets; they give 
rise to localized compression and dilation zones (Fig. 
12). The boundary conditions are more complex since 
they have only one bounding fault. They would be 
expected to give rise to similar patterns of structures and 
localized uplift and subsidence. Compressive regions 
should be x:haracterized by folds and reverse faults at a 
high angle to the zone, whereas dilational zones would 
have normal faults at a high angle and folds at a low angle 
to the zone. Patterns of this sort are clearly seen in the 
Najd fault system (Moore 1979). 

NEAR-SURFACE EFFECTS OF TRANSPRESSION 

One important aspect of the transpression model, 
which differs from wrench-type simple shear, is the 
vertical stretch (a). This may involve either thickening 
(a > 1) or thinning (t~ < 1) of the zone. Thus transpres- 
sion operating over substantial crustal thicknesses 
involves uplift or subsidence of the surface. As we have 
seen from the previous section, this may be most marked 
at offsets and terminations of faults, but it could also be 
a general feature of the entire zone. 

One of the best documented examples of the vertical 
displacements associated with transpression is in a study 
of the Mecca anticline in the San Andreas fault zone by 
Sylvester & Smith (1976). They describe a zone of 
shortening and uplift, bounded by convex-upward 
faults, that is curved faults which steepen downwards. 
These faults have a combination of reverse and strike- 
slip displacement. On either side of the block they dip 
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Fig. 13, Diagrammatic cross-section of a transpression zone showing 
crustal thickening and development of "flower structure'. 

inward, producing a wedge-shaped or 'keystone' uplift 
(Fig. 13). Similar structures are common in seismic 
sections of wrench zones and are termed 'flower struc- 
ture' (Harding & Lowell 1979). Gravitational collapse 
and/or gliding at the margins of the uplifted block may 
produce structures typical of thrust tectonic regimes. 

CONCLUSIONS 

Transpression represents a model with which to inter- 
pret structural features within fault-bounded zones of 
deformation. It involves a combination of pure shear 
and simple shear, both of which occur as special cases 
(y = 0 and a = I, respectively). 

Crustal shortening (a > 1) and wrench-type shear 
produce: 

(1) flattening (oblate) strain (k < 1), 
(2) steep cleavage and a stretching lineation which 

may be either vertical or horizontal, 
(3) folds and thrusts at small oblique angles to the 

zone, 
(4) normal faults, dykes, veins and other extensional 

structures at a high angle to the zone and 
(5) crustal thickening and vertical uplift. 

Crustal extension and shear ('transtension' of Harland 
1971) produce: 

(1) constrictionai (prolate) strain (k > 1), 
(2) horizontal stretching, with steep or flat cleavage, 
(3) folds and thrusts at a high angle to the zone, 
(4) extensional structures at a low angle and 
(5) crustal thinning, subsidence and basin develop- 

ment. 
Whilst this type of deformation can be applied to the 

bulk strain in entire zones, it is also useful in interpreting 

offsets and terminations in wrench zones and in describ- 
ing the strain in any block of crust defined by a parallelo- 
gram of faults. 

The bounding faults are important, since strain is not 
compatible between undeformed rock and that under- 
going transpression. In general these bounding faults 
will be steep, oblique-slip faults, but they may flatten 
upward. They typically dip in under uplifted blocks 
producing a 'flower structure'. 
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